Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mol Neurobiol ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509397

RESUMO

Neuropathic pain (NPP) is a common type of chronic pain. Glial cells, including astrocytes (AS), are believed to play an important role in the progression of NPP. AS cells can be divided into various types based on their expression profiles, among which A1 and A2 types have clear functions. A1-type AS cells are neurotoxic, while A2-type AS cells exert neuroprotective functions. Some types of lysophosphatidic acid receptors (LPAR) have been shown to play a role in NPP. However, it remains unclear how AS cells and LPAR6 affect the occurrence and progression of NPP. In this study, we established a mouse model of chronic constriction injury (CCI) to simulate NPP. It was found that the expression of LPAR6 in AS cells of the spinal dorsal horn was increased in the CCI model, and the thresholds of mechanical and thermal pain were elevated after knocking out LPAR6, indicating that LPAR6 and AS cells participated in the occurrence of NPP. The experiment involved culturing primary AS cells and knocking down LPAR6 by Lentivirus. The results showed that the NF-κB signal pathway was activated and the number of A1-type AS cells increased in the CCI model. However, LPAR6 knockdown inhibited the NF-κB signal pathway and A1-type AS cells. The results of the mRNA sequencing and immunoprecipitation test indicate an interaction between LPAR6 and ROCK2. Inhibiting ROCK2 by Y-27632 increased mechanical and thermal pain thresholds and alleviated NPP at the molecular level. The study presents evidence that LPAR6 activates the NF-κB pathway through ROCK2 and contributes to the progression of NPP by increasing A1-type AS and decreasing A2-type AS. This suggests that LPAR6 could be a potential therapeutic target for alleviating NPP. Clinical applications that are successful can offer new therapeutic options, enhance the quality of life for patients, and potentially uncover new mechanisms for pain modulation.

2.
Mycopathologia ; 189(2): 28, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483684

RESUMO

BACKGROUND: Fungal keratitis (FK) is a kind of infectious keratopathy with a high rate of blindness worldwide. Deoxynivalenol (DON) has been proven to have multiple toxic effects on humans and animals. OBJECTIVES: The aim of this study was to explore a possible pathogenic role of DON in FK. METHODS: We first made an animal model of FK in New Zealand white rabbits, and then attempted to detect DON in a culture medium in which Fusarium solani had been grown and also in the corneal tissue of the animal model of Fusarium solani keratitis. Next, a model of DON damage in human corneal epithelial cells (HCECs) was constructed to evaluate effects of DON on the activity, migration ability, cell cycle, and apoptosis in the HCECs. Then, putative the toxic damaging effects of DON on rabbit corneal epithelial cells and the impact of the repair cycle were studied. The expression levels of inflammatory factors in the corneas of the animal model and in the model of DON-damaged HCECs were measured. RESULTS: The Fusarium solani strain used in this study appeared to have the potential to produce DON, since DON was detected in the corneal tissue of rabbits which had been inoculated with this Fusarium solani strain. DON was found to alter the morphology of HCECs, to reduce the activity and to inhibit the proliferation and migration of HCECs. DON also induced the apoptosis and S-phase arrest of HCECs. In addition, DON was found to damage rabbit corneal epithelial cells, to prolong the corneal epithelial regeneration cycle, and to be associated with the upregulated expression of inflammatory factors in HCECs and rabbit corneas. CONCLUSIONS: DON appears to have a toxic damaging effect on HCECs in FK, and to induce the expression of inflammatory factors, leading to the exacerbation of keratitis and the formation of new blood vessels. Future studies will explore the possibility of developing a test to detect DON in ophthalmic settings to aid the rapid diagnosis of FK, and to develop DON neutralizers and adsorbents which have the potential to improve keratocyte status, inhibit apoptosis, and alleviate inflammation, therein providing new thinking for therapy of clinical FK.


Assuntos
Úlcera da Córnea , Infecções Oculares Fúngicas , Fusarium , Ceratite , Tricotecenos , Humanos , Coelhos , Animais , Ceratite/microbiologia , Células Epiteliais
3.
J Clin Lab Anal ; 38(1-2): e25008, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38235610

RESUMO

PURPOSE: Blood culture (BC) remains the gold standard for the diagnosis of bloodstream infections. Improving the quality of clinical BC samples, optimizing BC performance, and accelerating antimicrobial susceptibility test (AST) results are essential for the early detection of bloodstream infections and specific treatments. METHODS: We conducted a retrospective multicenter study using 450,845 BC specimens from clinical laboratories obtained from 19 teaching hospitals between 1 January 2021 and 31 December 2021. We evaluated key performance indicators (KPIs), turnaround times (TATs), and frequency distributions of processing in BC specimens. We also evaluated the AST results of clinically significant isolates for four different laboratory workflow styles. RESULTS: Across the 10 common bacterial isolates (n = 16,865) and yeast isolates (n = 1011), the overall median (interquartile range) TATs of AST results were 2.67 (2.05-3.31) and 3.73 (2.98-4.64) days, respectively. The specimen collections mainly occurred between 06:00 and 24:00, and specimen reception and loadings mainly between 08:00 and 24:00. Based on the laboratory workflows of the BCs, 16 of the 19 hospitals were divided into four groups. Time to results (TTRs) from specimen collection to the AST reports were 2.35 (1.95-3.06), 2.61 (1.98-3.32), 2.99 (2.60-3.87), and 3.25 (2.80-3.98) days for groups I, II, III, and IV, respectively. CONCLUSION: This study shows the related BC KPIs and workflows in different Chinese hospitals, suggesting that laboratory workflow optimization can play important roles in shortening time to AST reports and initiation of appropriate timely treatment.


Assuntos
Laboratórios , Sepse , Humanos , Hemocultura , Laboratórios Clínicos , Fatores de Tempo , Hospitais de Ensino , Sepse/diagnóstico
4.
bioRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014066

RESUMO

Alphaviruses are arthropod-borne enveloped RNA viruses that include several important human pathogens with outbreak potential. Among them, eastern equine encephalitis virus (EEEV) is the most virulent, and many survivors develop neurological sequelae, including paralysis and intellectual disability. The spike proteins of alphaviruses comprise trimers of heterodimers of their envelope glycoproteins E2 and E1 that mediate binding to cellular receptors and fusion of virus and host cell membranes during entry. We recently identified very-low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2), two closely related proteins that are expressed in the brain, as cellular receptors for EEEV and a distantly related alphavirus, Semliki forest virus (SFV) 1 . The EEEV and SFV spike glycoproteins have low sequence homology, and how they have evolved to bind the same cellular receptors is unknown. Here, we used single-particle cryo-electron microscopy (cryo-EM) to determine structures of the EEEV and SFV spike glycoproteins bound to the VLDLR ligand-binding domain. The structures reveal that EEEV and SFV use distinct surfaces to bind VLDLR; EEEV uses a cluster of basic residues on the E2 subunit of its spike glycoprotein, while SFV uses two basic residues at a remote site on its E1 glycoprotein. Our studies reveal that different alphaviruses interact with the same cellular receptor through divergent binding modes. They further suggest that the ability of LDLR-related proteins to interact with viral spike proteins through very small footprints with flexible binding modes results in a low evolutionary barrier to the acquisition of LDLR-related proteins as cellular receptors for diverse sets of viruses.

5.
J Asian Nat Prod Res ; 25(5): 497-502, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-34806497

RESUMO

(-)-5-Methylmellein (1) and its new dimer (2) were isolated from cultures of the basidiomycete Inonotus sinensis. Their structures were elucidated on the basis of extensive spectroscopic methods including UV, IR, HR-EI-MS, 1D NMR and 2D NMR. The structure of Compound 2 was determined by single-crystal X-ray crystallographic analysis. Compound 2 was tested for the cytotoxicities against five human cancer cell lines.


Assuntos
Basidiomycota , Inonotus , Humanos , Estrutura Molecular , Basidiomycota/química , Linhagem Celular Tumoral
6.
Front Bioeng Biotechnol ; 10: 922570, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814007

RESUMO

A hydrogel system loaded with mesenchymal stem cell-derived exosome (MSC-Exos) is an attractive new tool for tissue regeneration. However, the effect of the stiffness of exosome-loaded hydrogels on tissue regeneration is unclear. Here, the role of exosome-loaded hydrogel stiffness, during the regeneration of injured nerves, was assessed in vivo. The results showed that the photocrosslinkable hyaluronic acid methacrylate hydrogel stiffness plays an important role in repairing nerve injury. Compared with the stiff hydrogels loaded with exosomes, soft hydrogels loaded with exosomes showed better repair of injured peripheral nerves. The soft hydrogel promoted nerve repair by quickly releasing exosomes to inhibit the infiltration of macrophages and the expression of the proinflammatory factors IL-1ß and TNF-α in injured nerves. Our work revealed that exosome-loaded hydrogel stiffness plays an important role in tissue regeneration by regulating exosome release behavior and provided important clues for the clinical application of biological scaffold materials.

7.
Bioengineered ; 13(5): 12088-12098, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35577356

RESUMO

Antimicrobial resistance (AMR) has been a leading issue for human health globally threatening the achievement of several of the Sustainable Development Goals (SDGs). Originated from Bacillus cereus, carbapenemases phenotype has been considered to be a major concern in AMR. In this study, the AMR identification rate of P. aeruginosa isolates and infections in FAHJU showed an obvious upward trend from 2012 to 2016. All 88 carbapenem-resistant P. aeruginosa strains were screened for carbapenemase phenotype by modified Carbapenem Inactivation Method (mCIM), and these results of mCIM were compared with traditional PCR results. The isolates of P. aeruginosa and infected patients showed obvious upward trend from 2012 to 2016. The drug resistance to common clinical antibiotics was serious that the clinical rational use of antibiotics should be strengthened, which is in accordance with the Global Antimicrobial Resistance and Use Surveillance System (GLASS) report. In comparison, the results of mCIM showed that 18 out of 88 CRPA strains were carbapenemase positive, which were completely consistent with the results yielded by PCR method. Therefore, it is convinced that this mCIM methodology is a simple and quick method for detected carbapenemases producing P. aeruginosa and has a potential capability in carbapenemases phenotype of pathogen like B. cereus, which will undoubtedly aid in the AMR therapy.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Bacillus cereus/genética , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Fenótipo , Pseudomonas aeruginosa/genética , beta-Lactamases/genética
8.
Int J Nanomedicine ; 17: 1463-1478, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35378880

RESUMO

Purpose: Fusarium Solani is the principal pathogen associated with fungal keratitis. As a sensitive drug to F. Solani, natamycin (NAT) was limited by the poor penetration and low bioavailability in clinical application. The aim of this study was to develop a new type of tri-block polymer nanoparticle-gel complex (Gel@PLGA-PEI-PEG@NAT) for delivering NAT and evaluate its physicochemical properties, antifungal activity, safety, penetrability, adhesion, and efficacy in treating fungal keratitis. Methods: PLGA-PEI-PEG@NAT was prepared and characterized with a nano-particle size analyzer, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The minimum inhibitory concentration (MIC), cytotoxicity, penetrability of NAT (Natacyn® 5% ophthalmic suspension; Alcon) and PLGA-PEI-PEG@NAT with different concentrations were assessed. The eye surface retention time, ocular irritation, and curative effect of the NAT ophthalmic suspension and Gel@PLGA-PEI-PEG@NAT on a rabbit fungal keratitis model were evaluated. Results: PLGA-PEI-PEG@NAT had a particle size of 150 nm, a positive surface charge, and a sustained-release effect. The MIC for F. Solani was 2 µg/mL. A cytotoxicity test and ocular irritation test showed that PLGA-PEI-PEG@NAT and Gel@PLGA-PEI-PEG@NAT had good biocompatibility and no obvious irritation for rabbit corneas. Penetration experiments confirmed that PLGA-PEI-PEG@NAT can successfully enter corneal epithelial cells and through the cornea to enter the anterior chamber. Compared with NAT ophthalmic suspension, Gel@PLGA-PEI-PEG@NAT had stronger cornea permeation at the same concentration. The therapeutic effect and precorneal retention ability of the NAT ophthalmic suspension and Gel@PLGA-PEI-PEG@NAT on the fungal keratitis rabbit model were compared. Gel@PLGA-PEI-PEG@NAT achieved a better therapeutic effect at a lower drug concentration, and its eye surface retention time was significantly longer than that of the NAT ophthalmic suspension. Conclusion: Gel@PLGA-PEI-PEG@NAT was shown to be a safe and effective nanodrug delivery system for NAT. It has great potential to improve the cure rate of fungal keratitis, reduce the administration frequency during the treatment process, and improve patient compliance.


Assuntos
Nanopartículas , Natamicina , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Fusarium , Hidrogéis , Nanopartículas/química , Natamicina/farmacologia , Natamicina/uso terapêutico , Polietilenoglicóis/química , Polímeros/química , Coelhos
9.
Front Immunol ; 13: 837977, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154163

RESUMO

Chronic pain, such as persistent inflammatory pain, remains a public health problem that has no effective treatment at present. Bromodomain-containing protein 4 (BRD4) inhibition, induced by JQ1 injection or BRD4 knockdown, has been used to attenuate inflammatory pain; However, it remains elusive whether BRD4 aggravates inflammatory pain by regulating inflammasome. Western blot and immunofluorescence staining showed that BRD4 expression increased after administration of complete Freund's adjuvant (CFA) and reached its peak on day 3. Immunofluorescence staining showed that BRD4 was mainly colocalized with NeuN-positive neurons in the spinal cord, which was accompanied by upregulation of inflammasome component proteins, such as NLRP3, gasdermin D, and caspase-1. JQ1 was intrathecally injected into mice 1 h before CFA administration, and the mechanical and thermal hyperalgesia levels were measured on days 1, 3, and 7 after CFA administration. CFA-induced inflammatory pain, paw inflammation, and swelling were attenuated by pre-treatment with JQ1. To our knowledge, this study was the first to prove that NLRP3 inflammasome-induced neuronal pyroptosis participates in inflammatory pain. BRD4 inhibition decreased the expression of pyroptosis-related proteins by inhibiting the activation of NF-κB signaling pathway, both in vivo and in vitro. Taken together, BRD4 inhibition exerted analgesic and anti-inflammatory effects against inflammatory pain by inhibiting NF-κB and inflammasome activation, which protected neural cells from pyroptosis.


Assuntos
Azepinas/farmacologia , Inflamassomos/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Dor/tratamento farmacológico , Piroptose/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Triazóis/farmacologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Adjuvante de Freund/administração & dosagem , Hiperalgesia/tratamento farmacológico , Inflamação/fisiopatologia , Injeções Espinhais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
10.
Clin Lab ; 67(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33616318

RESUMO

BACKGROUND: Gastric cancer is the fifth most common malignancy worldwide. In early stages, no obvious symptoms are usually observed in gastric cancer patients, and it is especially hard to distinguish gastric cancer from benign gastric diseases, resulting in delayed diagnosis and poor prognosis. Common biomarkers of gastric cancer, such as CEA and CA19-9, are also elevated in benign diseases. There is an urgent need to develop a convenient and reliable biomarker for differentiating between gastric cancer and benign gastric diseases. METHODS: This study retrospectively analyzed the data of 126 patients, including 73 gastric cancer patients and 53 benign gastric disease patients. Patient characteristics collected for analysis included age, gender, laboratory data, and clinical staging. Unpaired t-test was used to check the difference of cholinesterase level between the gastric cancer group and the benign gastric disease group. Kruskal Wallis H test and Mann-Whitney U test were used to check the difference of cholinesterase level among different stage groups. Receiver operating characteristic (ROC) curve was used to assess whether cholinesterase level can be used as a biomarker for differentiating between gastric cancer and benign gastric diseases. RESULTS: Serum cholinesterase level was decreased significantly in the gastric cancer group in comparison to that of the benign gastric disease group (p < 0.001). In addition, cholinesterase level of stage IV patients was significantly lower than stage I patients. ROC curve analysis revealed that with a cutoff of 5,969.00 U/L, cholinesterase level showed an area under the curve of 0.819 (95% CI 0.732 - 0.905, p < 0.001) in differentiating between gastric cancer and benign gastric diseases. No significant difference in the levels of CEA and CA19-9 was observed between gastric cancer patients and benign gastric disease patients. CONCLUSIONS: This study indicated that serum cholinesterase level could be considered as a potential biomarker for differentiating between gastric cancer and benign gastric diseases.


Assuntos
Neoplasias Gástricas , Biomarcadores Tumorais , Antígeno CA-19-9 , Antígeno Carcinoembrionário , Colinesterases , Diagnóstico Diferencial , Humanos , Curva ROC , Estudos Retrospectivos , Neoplasias Gástricas/diagnóstico
12.
Cell Res ; 30(12): 1088-1097, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33051594

RESUMO

Activation of cyclic GMP-AMP synthase (cGAS) through sensing cytosolic double stranded DNA (dsDNA) plays a pivotal role in innate immunity against exogenous infection as well as cellular regulation under stress. Aberrant activation of cGAS induced by self-DNA is related to autoimmune diseases. cGAS accumulates at chromosomes during mitosis or spontaneously in the nucleus. Binding of cGAS to the nucleosome competitively attenuates the dsDNA-mediated cGAS activation, but the molecular mechanism of the attenuation is still poorly understood. Here, we report two cryo-electron microscopy structures of cGAS-nucleosome complexes. The structures reveal that cGAS interacts with the nucleosome as a monomer, forming 1:1 and 2:2 complexes, respectively. cGAS contacts the nucleosomal acidic patch formed by the H2A-H2B heterodimer through the dsDNA-binding site B in both complexes, and could interact with the DNA from the other symmetrically placed nucleosome via the dsDNA-binding site C in the 2:2 complex. The bound nucleosome inhibits the activation of cGAS through blocking the interaction of cGAS with ligand dsDNA and disrupting cGAS dimerization. R236A or R255A mutation of cGAS impairs the binding between cGAS and the nucleosome, and largely relieves the nucleosome-mediated inhibition of cGAS activity. Our study provides structural insights into the inhibition of cGAS activity by the nucleosome, and advances the understanding of the mechanism by which hosts avoid the autoimmune attack caused by cGAS.


Assuntos
Nucleossomos/ultraestrutura , Nucleotidiltransferases/química , Nucleotidiltransferases/ultraestrutura , Sítios de Ligação , Microscopia Crioeletrônica , DNA/metabolismo , Histonas/metabolismo , Humanos , Modelos Moleculares , Nucleossomos/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/metabolismo , Multimerização Proteica
13.
Nat Commun ; 11(1): 3618, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681106

RESUMO

Global emergencies caused by the severe acute respiratory syndrome coronavirus (SARS-CoV), Middle-East respiratory syndrome coronavirus (MERS-CoV) and SARS-CoV-2 significantly endanger human health. The spike (S) glycoprotein is the key antigen and its conserved S2 subunit contributes to viral entry by mediating host-viral membrane fusion. However, structural information of the post-fusion S2 from these highly pathogenic human-infecting coronaviruses is still lacking. We used single-particle cryo-electron microscopy to show that the post-fusion SARS-CoV S2 forms a further rotated HR1-HR2 six-helix bundle and a tightly bound linker region upstream of the HR2 motif. The structures of pre- and post-fusion SARS-CoV S glycoprotein dramatically differ, resembling that of the Mouse hepatitis virus (MHV) and other class I viral fusion proteins. This structure suggests potential targets for the development of vaccines and therapies against a wide range of SARS-like coronaviruses.


Assuntos
Betacoronavirus/química , Betacoronavirus/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Motivos de Aminoácidos , COVID-19 , Coronavirus/química , Coronavirus/classificação , Infecções por Coronavirus/virologia , Microscopia Crioeletrônica , Humanos , Fusão de Membrana , Modelos Moleculares , Pandemias , Pneumonia Viral/virologia , Conformação Proteica , Multimerização Proteica , SARS-CoV-2 , Internalização do Vírus
14.
Medicine (Baltimore) ; 99(28): e21037, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664112

RESUMO

BACKGROUND: Peripherally inserted central catheters (PICCs) has become increasingly popular in clinical practice because of the ease and safety of insertion and lower cost-effectiveness. The precise incidence and risk of PICC-related venous thrombosis is important to be verified in the context of growing PICC use and an understanding of the risk of venous thrombosis is an important cost and patient safety question. METHOD: We will search seven electronic databases including the Cochrane Library, MEDLINE, EMBASE, Chinese BioMedical Database, China National Knowledge Infrastructure, Chinese VIP and Wangfang Database regardless of publication date or language. All studies with prognostic factor analysis will be included if they recruited participants with PICC. Primary outcomes will include venous thrombosis. The risk of bias will be assessed by 2 authors using quality in prognostic studies tool. If possible, a meta-analysis in fixed or random effects model will be conducted by R-3.5.1 software, otherwise a narrative synthesis will ensue focusing on prognostic factors. The confidence in cumulative evidence will be assessed by Based on the Grading of Recommendations Assessment, Development and Evaluation. RESULTS: The aim of this study is to retrieve, appraise and summarize the clinical evidence of risk assessment for PICC-related venous thrombosis. CONCLUSIONS: This study will assess the precise incidence and risk of venous thrombosis in patients with PICC and provide references for establishing relevant assessment tools. ETHICS AND DISSEMINATION: This study is a protocol for systematic review and meta-analysis of prognostic factors for venous thrombosis in PICC patients. This review will be published in a journal and disseminated in print by peer-review.


Assuntos
Cateterismo Periférico/efeitos adversos , Projetos de Pesquisa , Trombose Venosa/etiologia , Humanos , Prognóstico , Medição de Risco , Fatores de Risco , Metanálise como Assunto
15.
Cell Mol Biol Lett ; 25: 12, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32161621

RESUMO

BACKGROUND: MicroRNA-125b (miR-125b) is downregulated in human cutaneous squamous cell carcinoma (CSCC). However, its function in CSCC has yet to be extensively explored. Here, we analyze the relationship between signal transducer and activator of transcription 3 (STAT3) and miR-125b in CSCC. METHODS: Western blotting and quantitative RT-PCR were used to determine the expression of the miR-125b-STAT3 axis in human CSCC tissues and cell lines. The direct regulatory effect of miR-125b on STAT3 expression was assessed using a luciferase reporter gene assay and RNA immunoprecipitation assay. The MTT assay and flow cytometry were used to determine the role of the miR-125b-STAT3 axis in CSCC cell proliferation and apoptosis. RESULTS: MiR-125b expression levels were significantly lower in CSCC cell lines and tissues than in normal cell lines and tissues. STAT3 was identified as the direct target of miR-125b. Upregulation of miR-125b and downregulation of STAT3 suppressed cell proliferation and promoted cell apoptosis. Cyclin D1 and Bcl2 were identified as the downstream targets of the miR-125-STAT3 axis. CONCLUSIONS: Our findings indicate that miR-125b acts as a tumor suppressor in CSCC by targeting the STAT3 pathway. This observation increases our understanding of the molecular mechanisms of CSCC. Therapies aimed at activating miR-125b or inhibiting STAT3 signaling should be explored as potential treatments for CSCC.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias Cutâneas/metabolismo , Apoptose/genética , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Ciclina D1/metabolismo , Humanos , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Transcrição STAT3/genética , Transdução de Sinais/genética , Neoplasias Cutâneas/genética
16.
Pest Manag Sci ; 76(7): 2368-2378, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32022382

RESUMO

BACKGROUND: Succinate dehydrogenase (SDH) has been identified as one of the most significant targets for fungicide discovery. To date, 23 commercial SDH inhibitor (SDHI) fungicides have been approved for plant protection since the first launch of carboxin in 1966, and extensively applied to combat destructive plant fungi. RESULTS: In this project, 20 novel pyridine sulfide derivatives containing SDH-based heterocyclic amide fungicide were designed, synthesized, and characterized by proton nuclear magnetic resonance (1 H-NMR), carbon-13 (13 C)-NMR and high-resolution mass spectrometry (HRMS). In vitro fungicidal activity experiment, the target compound I-1 displayed excellent inhibitory rates against the common agricultural pathogens with half maximal effective concentration (EC50 ) values of 5.2 to 39.8 µg mL-1 . The in vivo fungicidal activities demonstrated that the compound I-1 could effectively prevent Botrytis cinerea from infecting tomato and cucumber leaves with the preventative rates of 67% and 50%. The mitochondrial membrane potential detection, SDH enzyme assay and the molecular docking simulation revealed that the mechanism of action of the compound I-1 and the relevant interactions with the target enzyme may be similar to those of the control fluopyram. CONCLUSION: The biological activity screening and validation of mechanism of action indicated that the compound I-1 could be identified as a potential SDH inhibitor for further study. © 2020 Society of Chemical Industry.


Assuntos
Ascomicetos , Fungicidas Industriais/farmacologia , Botrytis , Simulação de Acoplamento Molecular , Doenças das Plantas , Piridinas , Relação Estrutura-Atividade , Succinato Desidrogenase , Sulfetos
17.
Microb Pathog ; 110: 678-681, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28390978

RESUMO

Recognized as a mobile genetic element, integron is correlated to the excision and integration of exogenous genes, especially bacterial resistance genes. However, most of the investigations focused on Gram-positive bacteria with few exceptions. In this study, Enterococcus faecalis was selected to investigate the excision and integration of class 1 integron. A total of eight plasmids were subjected to establish the transformants for excision and integration test. As results showed, positive excision assay was observed, which had been confirmed by the further integration assays and PCR amplification. The observation of class 1 integron mediated excision and integration of various exogenous antibiotics resistance genes should raise the attention of integrons as novel antibiotic resistance determinant in Gram-positive bacteria, especially in Enterococcus.


Assuntos
Enterococcus faecalis/genética , Integrons , Recombinação Genética , Vetores Genéticos , Plasmídeos , Reação em Cadeia da Polimerase , Transformação Bacteriana
18.
Microb Pathog ; 107: 304-308, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28392412

RESUMO

In this study, a number of frequently detected gene cassettes from bacterial integrons have been detected and characterized by rapid and simple loop-mediated isothermal amplification (LAMP) assays. Six gene cassettes commonly found in class 1 integrons were studied, including dfrA12, dfrA17, aadA2, aadA5, orfF, and blaVIM2. Primers design, sensitivity, specificity, optimization of each LAMP assay, as well as application of the developed 6 individual LAMP assays on a large scale of bacteria, had been conducted. The optimal amplification was obtained with temperature as 65 °C, reaction time span as 45 min and volume as 25 µl. For application, 272 isolates with various gene cassettes yielded expectable positive amplicons and other 685 integron-negative bacteria showed negative results for the LAMP assays, totaling 100% detection rate and specificity.


Assuntos
Bactérias/genética , Genes Bacterianos/genética , Integrons/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Primers do DNA , DNA Bacteriano , Temperatura Alta , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...